
A Genetic Algorithm problem solver for Archaeology 1

 A Genetic Algorithm problem solver for Archaeology

Carlos Reynoso (billyr@microsoft.com.ar) – Universidad de Buenos Aires

Edward Jezierski (edjez@microsoft.com) - Microsoft

Abstract

Generic algorithms are based on the mechanics of natural selection and genetics. They proved to

be an important methodology in the development of search and machine-learning methods, but its

relevance to archaeology is still to be tested. This paper consists in a basic introduction to the

subject, and the presentation of a “workbench” program (to be distributed for free) implementing

a general problem solver. The workbench requires a definition of the problem and a specification

of how to solve it. A problem is defined in terms of data types (which specify how to decode

alleles to phenotypical values), variables (of the specified data types) which define the genotype

of an individual, and an evaluation function to maximize or minimize (the tool accepts a script, a

series of IF-THEN-ELSE rules, or a compiled object). A solution configuration consist of which

operators to use with what activation probabilities, a selection policy, a fitness mapping policy, an

initial population size and a cut condition. The result produced is a collection of individuals with

phenotypical and genotypical values that optimize the fitness/evaluation function until the cut

condition is fulfilled. Archaeologists are invited to submit their problem definitions in order to

test them.

Keys words: modeling – archaeology – genetic algorithm – genetic computing –

simulation.

A Genetic Algorithm problem solver for Archaeology 2

Genetic Algorithms Refresher

Genetic Algorithms (GAs) were initially developed by John Holland at the University oh

Michigan in the seventies (Holland 1975). In the eighties they were combined with neural

networks, resulting in a paradigm sometimes called “neural Darwinism”. In the nineties it was

usual to implement GAs in computer programs; today we talk of Genetic Programming, instead

of GA. Anyway, GAs are used in search & optimization problems. Given a problem space in

which to search and/or optimize, GAs will mimic natural evolutionary patterns to some degree in

order to find individuals that meet a desired goal. Some of the most distinctive characteristics of

GAs are:

� Genetic Algorithms are a stochastic, yet structured search (they are not a variation of

Montecarlo approaches). Under the operators considered, GAs can be proven to

converge to the solution.

� GAs tune the search based on a population of search points rather than only one

search point. The position of a search point depends on the whole previous search

population, not just a previous search point.

� Genetic Algorithms perform the search with no knowledge of the actual structure of

the solution space but rather perform the search in a space which is a representation

of the solution space

The following are common terms used when discussing Genetic Algorithms:

Population: A set of individuals at a given time,

Individual: A particular solution to a problem (it may not be the best solution),

Phenotype: The values that make up a solution,

Genotype: The ‘genetic material’ of an individual that can be transformed into a phenotype.

A comparison between natural and GA terminology is in order (Fig 1):

A Genetic Algorithm problem solver for Archaeology 3

Natural Genetic algorithm

Chromosome String

Gene Feature, character or

detector

Allele Feature value

Locus String position

Genotype Structure

Phenotype Parameter set, alternative

solution, point (in the

solution space)

Epistasis Non linearity

(Fig. 1)

GAs typically implement three operators: reproduction, crossover and mutation.

The characteristics outlined above and their underlying mathematics make Genetic

Algorithms especially suitable for problems that:

� Have nonlinear search spaces – while GAs do searches in a space, the search is in a

space that defines a representation of the solution, not the solution itself. This

effectively decouples the solution space from the search space. For example, a

genetic algorithm trying to find the highest number between 0 and 7 (obviously 7)

could try to solve the problem in terms of finding the arrangement of 3 bits that

yields the highest numbers. The GA in this case is unaware of the fact each bit

sequence represents a natural number. It just asks an evaluator – what is the ‘fitness

A Genetic Algorithm problem solver for Archaeology 4

score’ for an individual whose genotype is (whose genes say) “101”? The phenotype

(“5” in this case) has no incidence over how the GA acts on the genes.

� Are highly polymodal – many points in the problem space may yield good solutions.

This results to some extent from the point above. Going back to the example, in terms

of search complexity, 0 and 1 are at the same Hamming distance than 0 and 4 – thus a

search will have little tendency to fall in ‘peaks’ or ‘valleys’ of the problem space.

This is also enhanced by the fact that the search is performed in terms of populations,

not single points.

GAs have many other attributes whose relative importance depends on the application at

hand.

Following is a quick summary of a generic Genetic Algorithm process. This will help

understand the design and implementation processes that had to be undergone to do problem

solving with Genetic Algorithms.

Process to use GAs

After much experience in working with Genetic Algorithms we have found that the

following is a simple yet effective representation of the process needed to use them:

1) Define a Problem

2) Define a Solution

3) Run the Solution

These phases are outlined in detail below.

Define the Problem

 When presented with a problem to be solved it is first important to understand the

freedoms and restrictions of the problem, and the expected outcome.

Take for example a simple problem:

A Genetic Algorithm problem solver for Archaeology 5

Find X such that X
2
 is the highest, with x being natural numbers between –2 and 5

From here we can infer that:

 We want to search (or optimize - a premise for GA use)

The search is done on a number of X’s,

The Xs are samples on a continuous dimension,

The dimension is bound between –2 and 5 and has 7 samples,

We are searching for a result of X
2
,

We want to maximize the result.

For most cases, the following approach – implemented in our Genetic Algorithm

workbench– covered the definition of most problems we were encountered with during a number

of research activities.

1) Identify Data Types for the Problem

a. Identify type – Continuous or categorical

b. Identify data type values – classes or bounds & samples

2) Identify variables that belong to certain data types

3) Express a transformation that will express fitness in terms of those variables and other

context information. This can be done by

a. A generic function, script, program or object

b. A set of rules of the form: if [condition] then [deltaT] else [deltaF]

4) Express the desire to maximize or minimize the fitness function.

An individual is then merely a representation of a solution. This representation is not done in

terms of the problem variables but in terms of a problem independent alphabet. For ease of

understanding in this paper we will assume that it is a binary alphabet (of 1’s and 0’s). For

simplicity we will also assume the alphabet is known a priori and is constant. In the example

above, an individual could be defined as three 1’s and 0’s: (-2=000, -1= 001, … , 4=110, 5=111).

A Genetic Algorithm problem solver for Archaeology 6

Define Solution

We call a “Solution” a set of parameters that will tell a Genetic Algorithm how to operate on

a problem. Typical solution settings include:

1) A population size (we will assume single populations of fixed sizes)

2) Genetic operators, with associated activation probabilities and operator-specific

parameters

3) Objective-Fitness transformation expressions, which will determine how a result in the

objective function (e.g. X
2
) maps to actual ‘individual’ fitness.

4) Cut conditions (which tell the GA runtime to stop the optimization process)

Run A Solution

 Running a solution entails creating a population of individuals based on the problem

definition and iteratively using process such as selection, operation and evaluation to create new

populations of better individuals – until a cut condition is met. The actual processing of the run is

done by a generic GA runtime.

The basic operation of the runtime is a loop that consists of generating new individuals

based on fitness, and evaluating them. Operators cause genetic material to change as new

individuals are created. The loop ends when a cut condition is met (Fig. 2)

Create a population, then…

(Fig.2)

Evaluate the new individuals of the population,

Based on fitness, select individuals to reproduce and create a new generation.

 As they reproduce, apply operators that modify the genetic structure of the new

individuals.

The three-step process and structure described above was implemented in a Genetic Algorithm

workbench.

A Genetic Algorithm problem solver for Archaeology 7

The GA Workbench

Using this simple yet flexible structure the workbench developed has been used to resolve

problems such as:

“Solve a 100+ city blind traveling sales person (bTSP) problem”

“Train a neural network robot controller to find all lights in a maze – avoiding walls”

“Tune performance of any distributed computer application”

The workbench mainly consists of:

� A Windows user interface that lets users define problems, solutions, and control &

monitor runs

� A runtime implemented as a series of COM objects which have the fundamental GA

algorithms and some COM interfaces for user-defined data types, operators, cut

conditions, user interface extensions etc

� A library of commonly used data types, operators, cut conditions, and fitness

mappings.

This workbench saves problems as .GAp files and solutions as .GAs files. These are structured

storage files that can be browsed using the data objects in the runtime.

The individual evaluation can be expressed as a VBScript function. This allows the user to enter a

program with any desired complexity for the evaluation, even creating custom or 3
rd

 party remote

COM objects on other computers.

Using the GA Process and Workbench for a particular problem

1) Defining the problem

a. Defining data types of the problem parameters

b. Defining variables

c. Defining an Evaluation of Performance

i. Defining how to apply the configuration to a subject system

A Genetic Algorithm problem solver for Archaeology 8

ii. Testing the simulation/system with the configuration

iii. Obtaining a ‘performance’ number

2) Defining a solution’s parameters (population sizes, etc.)

3) Running the GA

Sample screen showing variables, their data type and their description, as entered for a particular

application (Fig. 3)

Sample screen where a user may enter his own problem to solve. The tool provides

syntactic helpers so that the user does not need to master the programming

language, and many parameters for the system are visually accessible.

This screen shows the monitoring of a genetic algorithm run, with increasing fitness

values (Fig. 4)

Figure 3: List of variables defined for the problem.

A Genetic Algorithm problem solver for Archaeology 9

(Fig. 4)

The image above shows the GA Workbench console during a sample run (1). The chart

below displays maximum, minimum and average fitness for all individuals in the population.

Note how the average tends to the maximum, and how the minimum can vary so much from the

maximum, while the maximum is quite stable.

GAs and Archaeology

As observed, GA terminology usually has to do with rather outmoded mendelian ideas.

We are fully aware of it. On the micro level, the scientific understanding of DNA structure has

advanced a lot, and that terminology is no longer used. Today, genes and their behavior bear

relatively little resemblance to simple parameter setting. Anyway, conventional GA and GP really

work, and the new, more accurate metaphors (and their computational implementations) are still

under construction.

GAs were occasionally used in social sciences. In 1979 R. G. Reynolds developed a GA-

like adaptation schema to model prehistoric hunter-gatherer behavior. In 1981, Smith and DeJong

used GA search to assess calibration of population migration. In 1985, R. Axelrod simulated

behavioral norms using GA. The present paper is not an implementation of an archaeological

problem, but an invitation to test a paradigm and the offering of a tool.

A Genetic Algorithm problem solver for Archaeology 10

Why are we going to use GA in archaeology? Well, in the first place they are widely

used in a multiplicity of domains, such as mathematics, engineering, political science, medicine,

pattern recognition. After all, in non-analytic systems, semantics does not matter: algorithms are

blind, and meaning-independent. There are relatively few problem structures, and they are the

same across all disciplines. Besides, GA behaves especially well when processes are at stake, and

archaeological problems generally are related to processual and diachronical issues. We think GA

will be helpful to understand the underlying structure of an archaeological problem as a generic

problem:

• Does your archaeological reasoning really qualify as a problem?

• Do you know enough about your subject matter in order to formulate a problem,

or something essential is missing?

• How good a problem is it? Is it trivial? Is it solvable?

• What does a GA implementation of your archaeological problem look like?

GAs are specially suitable for problems having nonlinear search spaces and highly

polymodal problems. They help to asses the solution process as a search procedure, and today we

have a deep knowledge of them. Furthermore, they help to automate the invention process, which

involves factors such as intuition, creativity, abduction. Once upon a time, anthropology and

archaeology developed the first evolutionary theories and concepts outside biology. With GA, in

a sense, evolution theory comes back home.

A Genetic Algorithm problem solver for Archaeology 11

Notes.

1-The image is provided for illustrative purposes. Screenshots were not obtained in the actual

experiment.

A Genetic Algorithm problem solver for Archaeology 12

Further Reading

• Axelrod, R., 1985. Modeling the evolution of norms. Paper presented at the American

Political Science Association Meeting, New Orleans.

• Holland, J., 1975. Adaptation in natural and artificial systems. Ann Arbor: The

University of Michigan Press.

• Goldberg, D., 1989. Genetic algorithms in search, optimization & machine learning.

Addison Wesley, Reading.

• Koza, J., 1992. Genetic Programming: On the programming of computers by means of

natural selection. Cambridge: MIT Press.

• Koza, J. et al, 1999. Searching for the impossible using genetic programming.

Proceedings of the Genetic and Evolutionary Computation Conference, Orlando. San

Francisco: Morgan Kaufmann.

• Reynolds, R. G., 1979. An adaptive computer model for the evolution of plant collecting

and early agriculture for hunter-gatherers in the valley of Oaxaca, Mexico. Unpublished

doctoral dissertation. Ann Arbor: University of Michigan Press.

• Smith, T. and K. A. DeJong, 1981. Genetic algorithms applied to the calibration of

information driven models of US migration patterns. Proceedings of the 12
th
 Annual

Pittsburgh Conference on Modeling and Simulation, pp. 955-959.

Carlos Reynoso is Professor in Anthropology at the University of Buenos Aires. He is author of

several books on anthropologist theory. He was Senior Technical Advisor in Microsoft.

 Edward Jezierski is System Ingeneer and Technical Specialist Researcher in Microsoft.

